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Abstract. The body-fixed symmetry of the ideal asymmetric top is that of the double four 
(or quaternion) group. For integral spin this is equivalent to the ordinary four-group and 
the secular determinant breaks down diagonally into four distinct blocks, as  in the standard 
theory. For half-odd-integral spin, however, we obtain two equivalent blocks, the levels 
being doubly degenerate. A generalization is then presented which entails making the 
top wavefunction a spinor-valued quantity. This is expanded in spinor hyperspherical 
harmonics which are generalizations of the ordinary hyperspherical harmonics, the 9 h N .  
A systematic procedure is given for finding the elements of the secular determinant. The 
motivation for the generalization is that of spinor fields in a frozen Mixmaster universe. 

1 .  Introduction 

The problem of the asymmetric top in quantum mechanics is a standard one, dealt 
with by a number of authors (eg Landau and Lifshitz (1965); for a review of the topic 
see van Winter (1954); the work of King et a1 (1943) should also be mentioned). New 
interest in it has arisen following the recent publication of a paper (Hu 1973) in which 
the problem of scalar waves in a frozen Mixmaster universe (see Misner 1969) is shown 
to be mathematically identical to that of the asymmetric top, except that half-integral 
angular momenta are allowed as well as integral. We call this the ideal asymmetric 
top. Hu, however, does not deal with these half-integral spins as he explains in a later 
paper (Hu et a1 1973), saying that they lead to complications, and so this is the first 
thing to be investigated, in Q 2. It will be seen that there is a convenient, though dif- 
ferent, symmetry decomposition and the situation turns out not to be so complicated 
after all. The theory of the ideal spherical top has been discussed by Schulman (1968). 

If we take, instead of scalar waves, the case of spinor waves in an anisotropic universe 
-a problem which is equally as interesting-then Hu’s work must be generalized. 
The wave equation for the (massive) (2j+ 1)-spinor 4 in curved space can be written as 
(Dowker 1967) 

(VpVp + k R p v a p j p V ~ P -  m2)+ = 0 

where k is a constant for a given spin. The j p v  are the generators of the homogeneous 
Lorentz group in the ( j ,  0) representation and Rsvsp is the curvature tensor. All of these 
quantities are known for the case of the frozen Mixmaster universe as dealt with by 
Hu, to whom the reader is referred 
culated using the calculus of Cartan 
found that 

for the appropriate definitions. Rpvap can be cal- 
frames (see eg Misner 1963, appendix A), and it is 

Rpvap jpvjap = 1 ai j:. 
i 
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Here the ai are constants and the j i  are the standard spin-j angular momentum 
operators. We may use, for the spatial part of the covariant derivative (Dowker 1972) 

V i  = biLi+ciji (3) 

where the slightly more complicated form arises from the more general shape of this 
particular universe. The calculation of the covariant derivative is also most con- 
veniently performed using Cartan frames (see eg Brill and Cohen 1966 for an example). 

We define J = j +  L as the ‘total angular momentum’ and separate out the time 
dependence of (1) to obtain, using (2) and (3), an equation of the form 

\ i  I 

where t,b is a time independent (2j+ 1)-spinor. Equation (4) may be viewed as describing 
a top ‘with spin j’ and of ‘energy’ E’ - m2 where the ‘hamiltonian’ will be given by 

( 5 )  

The subject of 5 3 will be the calculation (at least in principle) of the eigenvalues of 
this hamiltonian and this will enable the problem of spinor waves in a frozen Mixmaster 
universe to be solved completely, although the computation of the eigenfunctions is 
not actually performed here. 

We should point out that the problem of massless fields also reduces to an analysis 
of the hamiltonian (5). 

X = C (1,L.Z + mijz + n ~ ; ) .  
i 

2. The asymmetric top for integral and half-integral spin. The ‘ideal’ top 

We begin by considering the symmetry properties of the top. Rotations of II about any 
of the three major axes carry the top into a configuration that cannot be distinguished 
from the original one. We shall call these three operators C”, Cb, C‘. The hamiltonian 
of the top is of the form 

(6) 

where a, b, c are related to the moments of inertia of the top, and Li are the components 
of the angular momentum operator L along the three principal axes of inertia of the 
top. Thus the Li are a body-fixed set. Plainly the hamiltonian commutes with the C. 

Now we proceed in a standard way and expand the wavefunction of the asymmetric 
top in terms of suitable basis functions. The set that springs to mind is that of the 
symmetric-top wavefunctions, which are just the representation functions of SU(2), and 
the expansion is of the form 

= U L :  + bL; + CL; 

where, if q are coordinates, the Euler angles a, 0, y say, 

< q l J M K )  E % f K ( t l P Y )  

in the standard fashion. The 9 L K  are of course well known. We note that the body- 
fixed set of operators Li operate only on the right index of the 9 L K ,  the left index being 
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operated on by space-fixed operators t,. In the absence of external fields etc, the asym- 
metric top retains a (2J + 1) degeneracy, corresponding to the possible values of the 
left index which indicates the orientation, with respect to space-fixed axes, of the spinning 
top. 

The effect of the above symmetry operations on our basis functions may be found, 
thus, 

C " ( J N M )  = 

C b l ~ N M )  = 1 ah , ( xxO) l~NK)  = eiJlrlJN - M )  

gJ,,(OxO)(JNK) = e-i(J+M)nlJN - M )  
K 

K 
( 7 )  

C' IJNM)  = 1 aJ,,(xOO)(JNK) = e-iMnIJNM). 
K 

(We have used the conventions of Brink and Satchler (1962).) 
If J is integral then C", Cb, C' intercommute and there exists therefore a set of simul- 

taneous eigenfunctions of them. If these eigenfunctions are used instead of the above, 
as a basis, then a considerable simplification results. 

The required eigenfunctions are given by 

1JNM.j)  = (2)- "'(IJNM) +( - l)?IJN - M ) )  

C a l J N M y )  = ( -  l)y+J+'yINMy) 

CblJNMy ) = ( - 1)Y + J I J N M y )  

C'IJNMy) = ( -  1)MJJNMy). 

(8) 
where y = 0, 1. From ( 7 )  and (8) we obtain 

These three operators, plus the identity, form the four-group D, (Landau and Lifshitz 
1965, p 355). This has four irreducible representations, all of them one dimensional, 
and the parities of M and ( J  + y)  label the particular representation of D, to which the 
eigenfunctions belong (table 1). 

Table 1. Irreducible representations A, B", E*, F of the group D, . 

A B" Bb F 

1 + + + + 
C" + + 
Cb + 
C' + 

- - 
- + - 
+ - - 

The important result is that since the hamiltonian Xo, equation (6) ,  commutes with 
all of the C and hence with all of the elements of an irreducible representation of D,, 
then So must be a multiple of the unit element, by Schur's lemma. Therefore Xo can- 
not connect states belonging to different representations of the group D,, ie we must 
have that, for the matrix elements [X03$M = ( J N M ' y ' l X o / J N M y ) ,  

( - 1 ) Y ' + J  = ( _ l ) Y + J  

( -  1)M' = ( -  1 y .  
and 
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Thus the energy matrix immediately breaks into four blocks, which with suitable 
labelling lie along the diagonal. To each block there correspond the parities of (y + J )  
and M. 

All of this is nothing new ; but suppose now that J is half integral. The C then no 
longer commute (in fact they anticommute) and so there do  not exist simultaneous 
eigenfunctions of them. However, the elements f 1, f C“, f Cb, f C‘ together make up 
the eight-group (quaternion group) 0; , which has but one faithful two-dimensional 
representation (Landau and Lifshitz 1965, p 370ta good example is f o i ,  f 1 where 
cri are the Pauli matrices. By the same reasoning as before, Ye, is a multiple of the unit 
element which means in this case that every energy level is doubly degenerate and hence 
that, with a suitable choice of basis, the hamiltonian matrix will factorize into two 
matrices of equal determinant. This is fairly easy to prove, but for now the fact will 
just be stated. In 6 3 the proof will be given for a more general case from which this 
case will be deducible. 

All that remains is the calculation of the matrix elements [XO]$M. Again this is 
very easy since the elements ( JNM’IX , IJNM)  are known (Landau and Lifshitz 1965, 
p 387). Thus, in principle, the problem of the asymmetric top for integral or half-integral 
spin is solved. 

There is just one more point concerning the form of the hamiltonian (5) and its 
matrix. We may write, according to Brink and Satchler (1962, p loo), and using their 
notation, 

aL: + bL,: +cL: = aLT:(L, L )  + /3,T;(L, L )  + y,[T;(L, L ) +  T?,(L, L) ] ,  (9) 

where the T are tensor (product) operators and a L ,  bL, y L  are given in terms of a, b, c. 
Nonzero matrix elements are obtained only if 

M’+M = 0, f2 

and 

A(J ,  J ,  2), 

which is satisfied identically. 
Thus, with suitable labelling, our matrices can be written as tri-diagonal ones, the 

determinants of which can be expanded in terms of continued fractions. There is then 
a very convenient iterative method of computing the eigenvalues (King et a1 1943). 

The eigen-energies for tops with a variety of half-integral spins have been calculated. 
For comparison with Hu (1973) we have given in figure 1 graphs of energy against 
‘shape and deformation’ parameters a, /3 for a few spins, where a and P are related to 
a, b, c above by a = 1/21?, b = 1/21;, c = 1/21; and 

I ,  = lo exp[P cos(a - n/3)] 

I ,  = I ,  exp[P cos(@ + n/3)] 
I ,  = I,, exp[ - P cos a], 

where I ,  is a constant. These parameters are related to the shape of the frozen Mix- 
master universe, mentioned above. 
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Figure 1. Energies of scalar waves in the Mixmaster universe for values J = i. . . . 
plotted against shape and deformation parameters a, p, 

3. Top with spin 

The theory of the asymmetric top outlined in the previous section has been used (Hu 
1973, Hu et a1 1973) in the discussion of scalar fields in an expanding universe. If we 
wish to consider higher-spin fields then the theory must be generalized and leads to 
what we term the quantum mechanics of an asymmetric top ‘with spin’. The wave- 
function now possesses a spinor index p, ranging from - j  to +j, and takes the form 
IC/a(q) = (p, qIIC/). The operator hamiltonian for the top with spin is 

x = 2 (&f  +mi$ + n&), 
i 

where J = j +  L is the ‘total’ angular momentum (equivalently, the generalized Lie 
operator) obtained by combining the ‘orbital’ angular momentum L with the intrinsic 
spinj. When the l i ,  mi, ni are equal to I ,  m, n respectively, we call the system a spherical 
top with spin, for which 2 = Xs lL2 + m j 2 + n J 2 .  An example of this occurs in the 
theory of higher-spin particles in an Einstein universe, the spatial part of which is a 
three-sphere. The field equations involve the ‘spinor laplacian’ (Dowker 1972), 

A = (x+r). (x+r), 
which is a special spherical case of (10). Here X i  are the right generators of motions 
of the three-sphere into itself, that is, of the group SU(2), and are therefore the angular 
momentum operators Li of the top; and the Ti are proportional to the spin angular 
momentum operators ji. A complete set of commuting operators for A (and for any e) is L 2  ( = E * ) ,  j z ,  E , ,  J ,  and J 2  (L  being the space-fixed (left) angular momentum 
operator). The eigenfunctions of this spinor laplacian will then be labelled by j ,  L, J ,  
N ( - L  < N < L), M (  - J  < M < J ) .  Here N indicates the invariance of the hamil- 
tonian (10) under left transformations of the three-sphere or, in the terminology of tops, 
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under rotations of the top about a space-fixed axis, and M is simply the third component 
of J where J = j +  L. Eigenfunctions of A (and of any &s) in the q, p representation are 

where C is a normalizing constant. This is a simple generalization of spin-orbit coupling 
(see, for instance, Landau and Lifshitz 1965, p 408) and as a general rule the states 
I J L j M N )  may be employed in all the usual angular momentum calculations (eg Brink 
and Satchler 1962), the 'left' index N simply being a 'spectator'. 

We intend to find the eigenvalues of the general hamiltonian (10) by expanding its 
eigenfunctions in terms of a suitable basic set and solving the secular equation with 
which standard theory then presents us. The complete commuting set for 2 is now 
reduced to just j 2 ,  L2 = L2 and L ,  and so the quantum numbers labelling such eigen- 
functions will be j ,  L ,  N and of course E. The I J L j M N )  may be used as a basis to obtain 
an expansion, 

I j L N E )  = 1 I J L j M N )  ( J L j M N J j L N E ) ,  
J M  

but this will not be continued with because we know, by analogy with the (simple) case 
of the last section, that considerations of symmetry will simplify the problem. There- 
fore, the symmetry operators C", Cb, C' which commute with the hamiltonian (10) are 
again introduced. As before, the effect of these may be found directly, to give 

C"1JLjMN) = e-i" 'J+M'IJLj- M N )  

C b l J L j M N )  = eiJnIJLj- M N )  (1 1 )  

C ' IJLjMN) = e - jM"IJL jMN) .  

We note that the states I J L j M N )  transform under right operations as 9 i ~ M  and this 
gives the above formulae. The situation is so similar to that of the last section that there 
is no need to repeat our arguments. All there is to remember is that 2 is no longer 
diagonal in J .  

The proofs which show explicitly the required decomposition of the energy matrix, 
in a suitable basis, will now be given. The functions 

IJMya) (2)- '"(1JLjMN) +( - l ) y I JL j -  M N ) )  (a = j , N )  (12) 

where M b 0 and y = 0, 1 will be used, and the two cases of J integral and half-integral 
treated separately. 

(i) J integral 

From ( 1 1 )  and (12) we obtain 

C"1JMyu) = ( -  l ) J + M + y  IJMYU) 

C b l J M p )  = (- l ) J f Y I J M y a )  

C'IJMyu) = (- l ) M I J M y ~ ) .  
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Using C" = (C")-' = (CO)+ (and similarly for Cb, Cc) we obtain 

(J'M'y'alZIJMya) 

= (J'M'y'alCbt&CbJ J M p )  = ( -  l)J+J'+Y-kY' ( J 'M 'y 'a lX lJMya)  

Therefore 
(-1)Y'J = ( - 1 ) Y ' + J  

Using c' in a similar manner, it can be shown that 

(13) 

(-1)M = ( - 1 ) M ' .  (14) 

(13) and (14) show that the hamiltonian splits into four blocks, each block being labelled 
by the parities of ( J + y )  and M ,  representing an irreducible representation of the 
group D, to which the operators C", Cb, C' belong. 

(ii) J halfintegral 

From (11) and (12) we obtain 

CIJMia )  = - 2  e-i(J+M)"IJM-icr) 

CblJMia)  = I. eiJ"IJMh) 

C'IJMla) = e-iMnlJM-Aa), 

where I. ( -  1)Y, plus the corresponding adjoint expressions. Thus 

C" = CcCb = -CbCc, and Cat = -C" = (CO)-' 

etc. Thus, 

(J'M'i.'alXl JMia)  = (J'M'E.'srlCbt~CblJME.cr). 

Therefore 
(-1)J'fY' = (_1)J+Y. 

'Raising' and 'lowering' operators that act on i may be defined, thus 

(eiJ"C'+ C")IJMla) = ei(J-M)"(l iA)IJM-Aa) 

and the corresponding adjoint expression. It is simple to show that 

( e - i J ' n c c t  f ~ a t ) ( ~ i J " c c + c a )  = (eiJ"+eiJ'")(e-iJ"TCb). 

By calculating 

( J'M'l'al(e-iJ'"C't f Cat)X(eiJnCc i C")IJMh), 

using (16) and (17), equating the two expressions obtained and then using (15), it can 
be shown that 

(J'M'l'ulXlJMia) = (J'M'-I 'al&~JM-lu) (18) e - i(M - M')n 

which completes the proof. 
Equations (15) and (18) show, firstly, that the hamiltonian splits into two blocks 

labelled by the parities of ( J f y ) ,  and secondly that these two blocks have the same 
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determinant. This leads to the twofold degeneracy that was earlier discussed, and 
justified on quite general grounds. 

All that now remains to enable us to solve the eigenvalue equation 

Y l j L N E )  = E J j L N E ) ,  (19) 

where 2 is given in (lo), is to find the matrix elements 

Y j j , , M M ,  = ( J ' L j M ' N I Y ( J L j M N ) .  

This is achieved by expressing Y as a sum of tensor operators, as in equation (9), for 
the j ,  L and J terms in turn. Standard angular momentum theory may then be used to 
evaluate all the matrix elements ( J 'L jM'NIT f1JL jMN)  where T: is a tensor (product) 
operator acting on J ,  j or L. A sample calculation of this sort will be found outlined 
in the appendix. 

It is not possible to display the eigenvalues of the hamiltonian (10) in as convenient 
and general a way as that for the ordinary ( j  = 0) asymmetric top (see eg van Winter 
1954, equation (61)) and so we present no numerical results. For given values of the 
coefficients I i ,  mi and n, there is, however, no particular difficulty in diagonalizing the 
secular determinant, although its form is not so simple as for j = 0. 

4. Discussion and conclusion 

We have investigated the mathematical eigenvalue problem for the hamiltonian (10). 
The case ofj = 0 is the ideal asymmetric top and the relevant complete set is essentially 
just that of the 9hN-the hyperspherical harmonics, eigenfunctions of the Laplace- 
Beltrami-Casimir operator on SU(2). The generalization to nonzero j means, in effect, 
that the wavefunction becomes a spinor-valued quantity and the functions, 

which we can term 'spinor hyperspherical harmonics', form the relevant complete set. 
They are eigenfunctions of the spinor Laplace operator on SU(2) and are equivalent 
to the SO(4) harmonics, D(Z, A),,,,, , discussed by Talman (1968) (See also Biedenharn 
1961). A more detailed discussion of these functions and their relation to the spin 
harmonics of Lyubarskii (1960), Miller (1964) and Newman and Penrose (1966) will be 
presented elsewhere. 

I t  may be of interest to note that, purely mathematically, the analysis is that of 
two coupled tops. The hamiltonian equivalent to (10) is then 

which can be taken as a purely differential operator acting on the six coordinates of the 
two tops. 

The motivation presented in this paper for considering spinor functions is that 
they are needed if we want to discuss particles with spin in a Mixmaster universe. It 
is likely that there are other situations where the Y harmonics would be useful. There 
are, of course, many places where the 9bN occur. It might be worthwhile giving one 
or two. We have already mentioned the top. Another place is in the theory of SU(2) 
chiral dynamics where, if we ignore the spatial dependence of the fields, quantum chiral 
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dynamics reduces to the theory of the spherical top (Dowker 1971, Dowker and Mayes 
1971). The 9iN also occur in the theory of the hydrogen atom where they are, 
essentially, the momentum space wavefunctions, as is very well known. Whether it 
makes physical sense to  generalize these situations to the spinor-valued case is open to 
discussion. The mathematical generalization is always possible. 
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Appendix. Calculation of < J‘LjM’N Tf(L,  L)I JLjMN) 

The conventions are those of Brink and Satchler (1962). Use of the Wigner-Eckart 
theorem gives 

By Brink and Satchler (1962, equations (5.9) and (5.5)), we obtain 

(J’Ljll TK& L)IIJLj) 

with 

and finally it is well known that 

(LIJLIJL’) = 6,,.[L(L+ 1 p .  

Thus everything is determined in terms of Racah coefficients and 3j  symbols, which are 
extensively tabulated. 

This and the similar results for Tf (J , J )  and T f ( j , j )  give a systematic way of 
evaluating the elements of the secular determinant of the hamiltonian (10). 
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